Welcome to Everything of Study

Sabtu, 30 November 2013

Teorema pytagoras

Sobat pasti tidak asing lagi dengan rumus a2 + b2 = c2. Itu adalah rumus dari teorema pythagoras. Kurang lebih 2500 tahun yang lalu seorang filsuf  yunani bernama Pythagoras menemukan fakta menarik tentang segitiga. Beliau menyatakan dalam sebuah segitiga siku-siku (salah satu sudutnya 90o), kuadrat sisi miringnya akan sama dengan jumlah kuadrat dari 2 sisi yang lain. Mari sobat hitung simak gambar berikut.
Jika kita punya sebuah segitiga siku-siku dengan sisi a,b, dan c
segitiga siku-sikuAkan berlaku
a2 + b2 = c2
dalam teorema yang dikemukakan oleh Pythagoras, sisi c atau sisi miring disebut dengan hipotenusa
Jika kuadrat merupakan luasan persegi, maka berlaku luasan persegi dari panjang sisi a + luasan persegi dari panjang sisi b = luasan panjang dari sisi c. Luasan ini akan kita gunakan untuk membuktikan rumus teorema Pythagoras, simak gambar berikut
pembuktian teorema pythagoras
dengan melihat gambar di atas maka
a^2 + b^2 = C^2
Pembuktian Toerema Pythagoras
Banyak cara yang bisa digunakan untuk membuktikan kebenaran teorema ini. Sobat bisa praktek langsung dengan alat atau menggunakan coret-coretan di kertas. Berikut ini pembuktian paling sederhana tentang kebenaran teorema Pythagoras dengan menggunakan luasan segitiga dan luasan persegi. Jika sobat punya segitiga siku-siku, cobalah menyusunnya membentuk kotak seperti di bawah ini.
pembuktian dalil pythagoras
Luas Persegi Besar = Luas Persegi
putih Kecil + Luas 4 Segitiga

(a+b)2 = c2 + 2.a.b
a2 + 2ab + b2 = c2 + 2ab
a2 +b2 = c2
 Pembuktian teorema Pythagoras lainnya yang bisa sobat lakukan adalah menggunakan tegel lantai, jika lantai rumah ada tegel atau ubinya, coba sobat buat segitiga alas 4 ubin dan tinggi 4 ubin
aplikasi phytagoras di kehidupanCoba sobat ukur panjang sisi miring dari segitiga di ubin tersebut (garis warna merah). Jika pengukuran sobat benar maka akan di dapat panjang sisi miring adalah 5 kali panjang ubin.

Tidak ada komentar:

Posting Komentar